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k-fold cross-validation

• Unbiased

• Lower variance than a single train-test split

• Complex dependence structure
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High-stakes applications
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High-stakes applications

Is algorithm A actually better
than algorithm B?
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Notations and setting

(Zi)i≥1 = (Xi, Yi)i≥1, Xi vector of covariates and Yi target
variable

For any vector B of indices in {1, . . . , n}, let ZB denote the
subvector of Z1:n corresponding to ordered indices in B.

Consider a set of k train-validation splits {(Bj , B′j)}kj=1 with

validation indices {B′j}kj=1 partitioning {1, . . . , n} into k folds.

hn(Zi, ZB): scalar loss function, evaluating the loss on the
test point Zi = (Xi, Yi) of the prediction rule learned on the
training data ZB. Examples of hn:

hn(Zi, ZB) =

{
(Yi − f̂(Xi;ZB))2

1[Yi 6= f̂(Xi;ZB)]

Alexandre Bayle CV CIs for Test Error 5 / 17



Notations and setting

(Zi)i≥1 = (Xi, Yi)i≥1, Xi vector of covariates and Yi target
variable

For any vector B of indices in {1, . . . , n}, let ZB denote the
subvector of Z1:n corresponding to ordered indices in B.

Consider a set of k train-validation splits {(Bj , B′j)}kj=1 with

validation indices {B′j}kj=1 partitioning {1, . . . , n} into k folds.

hn(Zi, ZB): scalar loss function, evaluating the loss on the
test point Zi = (Xi, Yi) of the prediction rule learned on the
training data ZB. Examples of hn:

hn(Zi, ZB) =

{
(Yi − f̂(Xi;ZB))2

1[Yi 6= f̂(Xi;ZB)]

Alexandre Bayle CV CIs for Test Error 5 / 17



Notations and setting

(Zi)i≥1 = (Xi, Yi)i≥1, Xi vector of covariates and Yi target
variable

For any vector B of indices in {1, . . . , n}, let ZB denote the
subvector of Z1:n corresponding to ordered indices in B.

Consider a set of k train-validation splits {(Bj , B′j)}kj=1 with

validation indices {B′j}kj=1 partitioning {1, . . . , n} into k folds.

hn(Zi, ZB): scalar loss function, evaluating the loss on the
test point Zi = (Xi, Yi) of the prediction rule learned on the
training data ZB. Examples of hn:

hn(Zi, ZB) =

{
(Yi − f̂(Xi;ZB))2

1[Yi 6= f̂(Xi;ZB)]

Alexandre Bayle CV CIs for Test Error 5 / 17



Notations and setting

(Zi)i≥1 = (Xi, Yi)i≥1, Xi vector of covariates and Yi target
variable

For any vector B of indices in {1, . . . , n}, let ZB denote the
subvector of Z1:n corresponding to ordered indices in B.

Consider a set of k train-validation splits {(Bj , B′j)}kj=1 with

validation indices {B′j}kj=1 partitioning {1, . . . , n} into k folds.

hn(Zi, ZB): scalar loss function, evaluating the loss on the
test point Zi = (Xi, Yi) of the prediction rule learned on the
training data ZB. Examples of hn:

hn(Zi, ZB) =

{
(Yi − f̂(Xi;ZB))2

1[Yi 6= f̂(Xi;ZB)]

Alexandre Bayle CV CIs for Test Error 5 / 17



k-fold cross-validation error and k-fold test error

Definition (k-fold cross-validation error)

R̂n , 1
n

∑k
j=1

∑
i∈B′j

hn(Zi, ZBj )

k either fixed or dependent on n

The terms are not independent. What is the asymptotic
behavior?

Definition (k-fold test error)

Rn , 1
n

∑k
j=1

∑
i∈B′j

E[hn(Zi, ZBj ) | ZBj ]

It is a standard inferential target and represents the average test
error of the k prediction rules f̂(·;ZBj ) for j = 1, . . . , k.

Goal

Central Limit Theorem on R̂n under mild assumptions
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Algorithmic stability

Stability

How much does the performance of a learned prediction rule
change when one point in the training set is changed? Different
kinds of stability, for example:

Uniform stability

Mean-square stability γms

Loss stability γloss

Note: γloss ≤ γms

[Bousquet and Elisseeff, 2002, Kale et al., 2011, Kumar et al., 2013, Celisse
and Guedj, 2016, . . . ]
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Asymptotic normality of k-fold CV

Theorem

Suppose (Zi)i≥1 are i.i.d. copies of a random element Z0.
Let h̄n(Z0) = E[hn(Z0, Z1:n(1−1/k)) | Z0] and σ2n = Var(h̄n(Z0)).
If the following conditions hold:

γloss(hn) = o(σ2n/n),

the sequence of (h̄n(Z0)− E[h̄n(Z0)])
2/σ2n is uniformly

integrable,

then √
n

σn

(
R̂n −Rn

)
d→ N (0, 1).
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Improvement upon previous literature

Dudoit and van der Laan, Theorem 3 (2005)

Assumes a bounded loss function

Excludes leave-one-out CV

Requires the prediction rule to be loss-consistent for a
risk-minimizing prediction rule

Austern and Zhou, Theorem 1 (2020)

Assumes variance parameter converging to a non-zero limit

Requires o(1/n) mean-square stability

Requires o(1/n2) second-order mean-square stability

Assumes learning algorithms symmetric in the training points
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k-fold test error confidence intervals

Goal

Construct an asymptotically-exact (1− α)-confidence interval for
the unknown k-fold test error Rn

Confidence interval

Consider σ̂2n a variance estimator satisfying relative error

consistency, σ̂2n/σ
2
n

p→ 1. With the CLT,

Cα , R̂n ± q1−α/2 σ̂n/
√
n

satisfies

limn→∞ P(Rn ∈ Cα) = 1− α

where q1−α/2 is the (1− α/2)-quantile of a standard normal
distribution
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Testing for algorithm improvement

Goal

Given a dataset Z1:n, a k-fold partition {B′j}kj=1, and two
algorithms A1, A2 for fitting prediction rules, test whether A1

improves upon A2 on the fold partition

Test

Define

hn(Z0, ZB) = `(Y0, f̂1(X0;ZB))− `(Y0, f̂2(X0;ZB)).

Consider σ̂2n a variance estimator satisfying relative error

consistency, σ̂2n/σ
2
n

p→ 1.
Test the null H0 : Rn ≥ 0 against the alternative hypothesis
H1 : Rn < 0. Asymptotically-exact level-α test is given by

reject H0 ⇔ R̂n < qασ̂n/
√
n

where qα is the α-quantile of a standard normal distribution
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Consistent variance estimation

Want to find an estimator σ̂2n such that σ̂2n/σ
2
n

p→ 1 under weak
conditions.

Definition (Within-fold variance estimator)

σ̂2n,in is the average of the k within-fold empirical variances

Definition (All-pairs variance estimator)

σ̂2n,out ,
1
n

∑k
j=1

∑
i∈B′j

(hn(Zi, ZBj )− R̂n)2

Advantage: can also be used for leave-one-out cross-validation

Low computational cost

σ̂2n,in and σ̂2n,out can be computed in O(n) time
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Consistent variance estimation

Theorem

Suppose (Zi)i≥1 are i.i.d. copies of a random element Z0.
Let h̄n(Z0) = E[hn(Z0, Z1:n(1−1/k)) | Z0] and σ2n = Var(h̄n(Z0)).
If the following conditions hold:

1 γloss(hn) = o(σ2n/n),

2 the sequence of (h̄n(Z0)− E[h̄n(Z0)])
2/σ2n is uniformly

integrable,

then

σ̂2n,in /σ
2
n
L1

→ 1.

If additionally:

3 γms(hn) = o(kσ2n/n),

then

σ̂2n,out /σ
2
n
L1

→ 1.
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Experiments – k-fold test error confidence intervals

Cα = R̂n ± q1−α/2 σ̂n/
√
n with α = 0.05

Our CV CLT procedure: valid coverage, smallest width
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Figure: Test error coverage (top) and width (bottom) of 95% confidence intervals. Left: `2-regularized logistic
regression classifier. Right: Random forest regression.
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Experiments – Testing for algorithm improvement

reject H0 ⇔ R̂n < qασ̂n/
√
n with α = 0.05

Our CV CLT procedure: valid size, most powerful
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Figure: Size when testing H1 : Err(A1) < Err(A2) (top) and power when testing H1 : Err(A2) < Err(A1)

(bottom) of level-0.05 tests for improved test error. Left: A1 = `2-regularized logistic regression, A2 = neural
network classification. Right: A1 = random forest, A2 = ridge regression.
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Conclusion
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Thank you!
Cross-validation Confidence Intervals for Test Error

Paper: https://arxiv.org/abs/2007.12671

Code: https://github.com/alexandre-bayle/cvci

Also in the paper:

additional theoretical results

experiments in the leave-one-out setting

experiments illustrating the importance of stability
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