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High-stakes applications

I Articles

Prediction of cancer outcome with microarrays: a multiple
random validation strategy
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High-stakes applications

Is algorithm A actually better
than algorithm B?
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Notations and setting

o (Z)i>1 = (Xi,Yi)i>1, X; vector of covariates and Y; target
variable

Alexandre Bayle CV Cls for Test Error 5/17



Notations and setting

o (Z)i>1 = (Xi,Yi)i>1, X; vector of covariates and Y; target
variable

@ For any vector B of indices in {1,...,n}, let Zp denote the
subvector of Z;., corresponding to ordered indices in B.

Alexandre Bayle CV Cls for Test Error 5/17



Notations and setting

o (Z)i>1 = (Xi,Yi)i>1, X; vector of covariates and Y; target
variable
@ For any vector B of indices in {1,...,n}, let Zp denote the

subvector of Z;., corresponding to ordered indices in B.
o Consider a set of k train-validation splits {(B;, B;)}?:l with
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Notations and setting

o (Z)i>1 = (Xi,Yi)i>1, X; vector of covariates and Y; target
variable

@ For any vector B of indices in {1,...,n}, let Zp denote the
subvector of Z;., corresponding to ordered indices in B.

o Consider a set of k train-validation splits {(B;, B;)}?:l with
validation indices {B; ?:1 partitioning {1,...,n} into k folds.

@ h,(Z;, Zp): scalar loss function, evaluating the loss on the
test point Z; = (X;,Y;) of the prediction rule learned on the
training data Zp. Examples of h,,:

Y- f(Xi ZB))?

hn(Zi, Zp) = {Il[Yi # f(Xi; Zg))
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k-fold cross-validation error and k-fold test error

Definition (k-fold cross-validation error)

. 5
R,21 > i=1 ZieB§. hn(Zi, ZB;)

@ k either fixed or dependent on n

@ The terms are not independent. What is the asymptotic
behavior?
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k-fold cross-validation error and k-fold test error

Definition (k-fold cross-validation error)
> k
Ry, = % Zj:l Zz’eB; hn(Zi’ ZBj)

@ k either fixed or dependent on n
@ The terms are not independent. What is the asymptotic

behavior?

Definition (k-fold test error)
R, = % Z;’C:l ZieB} E[hn(Zi7 ZBj) | ZBj]

It is a standard inferential target and represents the average test
B;) forj=1,...,k.

error of the k prediction rules f(
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k-fold cross-validation error and k-fold test error

Definition (k-fold cross-validation error)
3 k
Ry, = % Zj:l Zz’eB; hn(Zi’ ZBj)

@ k either fixed or dependent on n
@ The terms are not independent. What is the asymptotic

behavior?

Definition (k-fold test error)
R, = % Z;’C:l ZieB} E[hn(Zi7 ZBj) | ZBj]

It is a standard inferential target and represents the average test

error of the k prediction rules f(:; Zp;) for j =1,...,k.
Central Limit Theorem on R,, under mild assumptions
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Algorithmic stability

Stability

How much does the performance of a learned prediction rule
change when one point in the training set is changed? Different
kinds of stability, for example:

@ Uniform stability
@ Mean-square stability Vs
@ Loss stability v;0ss

Note: Yioss < Yims

[Bousquet and Elisseeff, 2002, Kale et al., 2011, Kumar et al., 2013, Celisse
and Guedj, 2016, ...]
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Asymptotic normality of k-fold CV

Theorem

Suppose (Z;);>1 are i.i.d. copies of a random element Z

Let f_ln(Zo) = E[hn(Z(), Zl:n(l—l/k:)) ’ Zo] and 0721 = Var(ﬁn(Zg)).

If the following conditions hold:
° 'Yloss(hn) = O(U%/H),

o the sequence of (h,(Zo) — E[hn(Z0)])?/02 is uniformly

integrable,
then

oo (Rn . Rn> 4 N(0,1).
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Improvement upon previous literature

Dudoit and van der Laan, Theorem 3 (2005)

@ Assumes a bounded loss function
@ Excludes leave-one-out CV

@ Requires the prediction rule to be loss-consistent for a
risk-minimizing prediction rule
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Improvement upon previous literature

Dudoit and van der Laan, Theorem 3 (2005)

@ Assumes a bounded loss function

@ Excludes leave-one-out CV

@ Requires the prediction rule to be loss-consistent for a
risk-minimizing prediction rule

Austern and Zhou, Theorem 1 (2020)

@ Assumes variance parameter converging to a non-zero limit

@ Requires o(1/n) mean-square stability
@ Requires o(1/n?) second-order mean-square stability

@ Assumes learning algorithms symmetric in the training points
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k-fold test error confidence intervals

Construct an asymptotically-exact (1 — «v)-confidence interval for
the unknown k-fold test error R,
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k-fold test error confidence intervals

Construct an asymptotically-exact (1 — «v)-confidence interval for
the unknown k-fold test error R,

Confidence interval

Consider 62 a variance estimator satisfying relative error
consistency, 62 /02 2 1. With the CLT,

Co = Rn + q1—a/2 a-n/\/ﬁ

satisfies
lim, ;oo P(R, € Cy) =1—«

where q;_, /5 is the (1 — a/2)-quantile of a standard normal
distribution
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Testing for algorithm improvement

Given a dataset Z1.,, a k-fold partition {B; ?:1- and two

algorithms Ay, A, for fitting prediction rules, test whether Ay
improves upon Ay on the fold partition
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Testing for algorithm improvement

Goal

Given a dataset Z1.,, a k-fold partition {B; ;?:1, and two

algorithms Ay, A, for fitting prediction rules, test whether Ay
improves upon Ay on the fold partition

Test
Define

ha(Zo, Z5) = £(Yo, f1(Xo; ZB)) — £(Yo, f2(Xo; ZB))-

Consider 62 a variance estimator satisfying relative error
consistency, 62 /02 5 1.

Test the null Hy : R, > 0 against the alternative hypothesis
H, : R, < 0. Asymptotically-exact level-« test is given by

REJECT Hy & R, < GaOn//1

where g, is the a-quantile of a standard normal distribution
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Consistent variance estimation

Want to find an estimator 62 such that 62 /02 % 1 under weak
conditions.

Definition (Within-fold variance estimator)

A9 . . . .. -
0;,.in IS the average of the k within-fold empirical variances

Definition (All-pairs variance estimator)

o k a
Uz,out £ % Zj:l ZieB; (hn(Zia ZBj) - Rn)2

Advantage: can also be used for leave-one-out cross-validation

Low computational cost

2. and 62, can be computed in O(n) time

Un,in n,0U
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Consistent variance estimation

Theorem

Suppose (Z;);>1 are i.i.d. copies of a random element Zj.
Let Bn(Zo) = ]E[hn(ZO, Zl:n(l—l/k)) | Zo] and O'TQL = Var(ﬁn(Zg)).
If the following conditions hold:
o 'Yloss(hn) = 0(0'721/71),
@ the sequence of (h,,(Zy) — E[h,(Z0)])?/o? is uniformly
integrable,
then

1
) o L
G in Jos = 1.
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Consistent variance estimation

Theorem

Suppose (Z;)i>1 are i.i.d. copies of a random element Zj.
Let hn(Zo) = ]E[hn(ZO, Zl:n(l—l/k)) | Zo] and O'TQL = Var(hn(Zg)).
If the following conditions hold:

o 7loss(hn) = 0(0'721/71)

@ the sequence of (h,,(Zy) — E[h,(Z0)])?/o? is uniformly

integrable,
then
nwn/a 4%1
If additionally:
© Vis(hn) = o(koy /n),
then
nmn/a 5
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Experiments — k-fold test error confidence intervals

Co=RuEqi_u/26a/y/n with a=005

Our CV CLT procedure: valid coverage, smallest width

Coverage probability
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Figure: Test error coverage (top) and width (bottom) of 95%
regression classifier. Right: Random forest regression.
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Experiments — Testing for algorithm improvement

REJECT Ho < Ry < qabn/\/n with a = 0.05

Our CV CLT procedure: valid size, most powerful
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Figure: Size when testing Hp : Err(A1) < Err(LA2) (top) and power when testing Hq : Err(As) < Err(Aq)
(bottom) of level-0.05 tests for improved test error. Left: A1 = Zz-regularized logistic regression, Ao = neural
network classification. Right: A = random forest, Ao = ridge regression.
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Conclusion

ALGORITHMIC UNIFORM
STABILITY INTEGRABILITY

U U

CENTRAL LIMIT THEOREM
+
CONSISTENT VARIANCE ESTIMATOR

! 1

TEST ERROR ASSESSMENT TESTING FOR ALGORITHM
WITH CONFIDENCE INTERVALS IMPROVEMENT
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Thank you!
Cross-validation Confidence Intervals for Test Error
Paper: https://arxiv.org/abs/2007.12671
Code: https://github.com/alexandre-bayle/cvci

Also in the paper:
o additional theoretical results
@ experiments in the leave-one-out setting

@ experiments illustrating the importance of stability
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